Teori Dasar Algoritma Genetika


Algoritma genetika yang dikembangkan oleh Goldberg adalah algoritma komputasi yang diinspirasi teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi aturan “yang kuat adalah yang menang”. Darwin juga menyatakan bahwa kelangsungan hidup suatu makhluk dapat dipertahankan melalui proses reproduksi, crossover, dan mutasi. Konsep dalam teori evolusi Darwin tersebut kemudian diadopsi menjadi algoritma komputasi untuk mencari solusi suatu permasalahan dengan cara yang lebih “alamiah”.

Sebuah solusi yang dibangkitkan dalam algoritma genetika disebut sebagai chromosome, sedangkan kumpulan chromosome-chromosome tersebut disebut sebagai populasi. Sebuah chromosome dibentuk dari komponen-komponen penyusun yang disebut sebagai gen dan nilainya dapat berupa bilangan numerik, biner, simbol ataupun karakter tergantung dari permasalahan yang ingin diselesaikan. Chromosome-chromosome tersebut akan berevolusi secara berkelanjutan yang disebut dengan generasi. Dalam tiap generasi chromosome-chromosome tersebut dievaluasi tingkat keberhasilan nilai solusinya terhadap masalah yang ingin diselesaikan (fungsi_objektif) menggunakan ukuran yang disebut dengan fitness. Untuk memilih chromosome yang tetap dipertahankan untuk generasi selanjutnya dilakukan proses yang disebut dengan seleksi. Proses seleksi chromosome menggunakan konsep aturan evolusi Darwin yang telah disebutkan sebelumnya yaitu chromosome yang mempunyai nilai fitness tinggi akan memiliki peluang lebih besar untuk terpilih lagi pada generasi selanjutnya.

Chromosome-chromosome baru yang disebut dengan offspring, dibentuk dengan cara melakukan perkawinan antar chromosome-chromosome dalam satu generasi yang disebut sebagai proses crossover. Jumlah chromosome dalam populasi yang mengalami crossover ditetukan oleh paramater yang disebut dengan crossover_rate. Mekanisme perubahan susunan unsur penyusun mahkluk hidup akibat adanya faktor alam yang disebut dengan mutasi direpresentasikan sebagai proses berubahnya satu atau lebih nilai gen dalam chromosome dengan suatu nilai acak. Jumlah gen dalam populasi yang mengalami mutasi ditentukan oleh parameter yang dinamakan mutation_rate. Setelah beberapa generasi akan dihasilkan chromosome-chromosome yang nilai gen-gennya konvergen ke suatu nilai tertentu yang merupakan solusi terbaik yang dihasilkan oleh algoritma genetika terhadap permasalahan yang ingin diselesaikan.

source : http://mick182.blogspot.com

0 komentar:

Poskan Komentar